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ABSTRACT
The Cauchy problem du/dt = Au(t), u(0) = uy,€ D{4) has analytic solutions
when A has first and second Gateaux derivatives along the solution curve ina
certain weak sense. Here 4 is a maximal monotone operator in a complex
Hilbert space.

0. Introduction

In this paper we discuss nonlinear holomorphic semigroups in Hilbert
spaces, intending to remove the assumption of the complex Fréchet differen-
tiability of “resolvent” of 4: (Al — 4) ™.

K. Yosida [11] first established analyticity of semigroups of linear operators.
T. Kato-H. Tanabe [5] and K. Masuda [9] considered linear holomorphic
evolution operators. In case of semilinear and quasilinear equations several
authors discussed analyticity of the solutions (S. Ouchi [10], Hayden~Massey
[4], Massey [8], Furuya {2, 3]).

Y. Komura [6] gave the relation of nonlinear holomorphic semigroups to
resolvents of generators. Instead of linearity of 4, he assumed complex Fréchet
differentiability of the resolvent of A.

In the present paper we assume only “temporal analyticity” of 4, more
precisely we consider analyticity for the equation du(t)/dt € Au(t) under the
assumption that 4 has first and second Gateaux derivatives along the solution
curve in a certain weak sense.

The author wishes to express her sincere gratitude to Professor Y. Komura
for his kind advice.
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1. Main theorem

We establish analyticity in ¢ of solutions to nonlinear evolution equations:

d
(1.1 —u(t)y=Au(t), O0=t=T,
dt
(1.2) u(0) = uy€D(A).
Let (H, | - || ) be a complex Hilbert space with norm || - || .

We assume the following conditions:

(A.1) A is a single valued maximal monotone operator from H to H.

(A.2) G is a normed space with norm || - ||¢. G contains H and || - ||¢ =

-

(A.3) There is a single valued operator 4; from H to G with restriction
Ag |lpuy=A4 and D(4g) =H.

(A.4) For any x € D(A) there exist a linear function 34 (x) from Hto G, L >0,
and a(x) > 0 satisfying the following:

(1.3) Ag(x + AMx + £(A)) = Ax + 204(x)Ax + 1(A),
104()dx |l¢ SL | Ax ||  for |A] =a(x), AEC,
I n(A) ¢ = H@A)=o(|A]), | eA) | =E@)=o0(4)]),
inf{a(x); || x || <N} =ay>0.

(A.5) There exist a constant @ €(0, #/2) and a “resolvent” operator (4 + 4)~!
satisfying D((4 + A)~")=H for |arg 1| <7/2 + w.

(A6) |A+A1)x— A+ 'y | =(up{Re(e ™A); 18] <w}) 'ffx—y]| for
largA| =n/2+w, x,yEH.

(A.7) Forany x € D(A) there exist a linear operator 3’4 from Hto L(H; L(H; G))
and a function £(4) = 0 satisfying

(1.9) AA(x + Adx + L))y = 0A(x)y + A0%A(x, Ax)y + E(A)y,
fe@ | SE@Q)=0(A1), 1) frma=ZR)=0(I2]).
Here L(X; Y) is the space of linear operators from X to Y.

THEOREM 1. For some complex sector L, = {t €C;|arg t| <0}, there exists a
holomorphic function u which satisfies the following Cauchy problem:
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fl(—u(t)=Au(t), t€X,,
(1.5) dt
u(0) = uy € D(A).

2. Preliminaries

First, we cite a known theorem:

THEOREM A. Let H be a Hilbert space and — A be a maximal monotone
operator from H to H. Then the Cauchy problem

(2.1) %u(t)=Au(l), 0<y,

2.2) u(0) = uy,&€D(A4),
has a unique solution u(t).

REMARK. For properties of maximal monotone operators and the Cauchy
problem (2.1) and (2.2), see Brezis [1] or Komura-Konishi [7].

LEMMA 1. Forany 8, |6| <w, — e”A is a maximal monotone operator.

ProoFr. By virtue of (A.5) we have only to show the monotonicity of
— e"4. By (A.6) we get

I +e4)~"x — (A +€94) "1y || = | (e A +4)""x — (e~ A+ A)"'y |
=Rele™ ) x—y]-

LEMMA 2. Let u(t) be a solution to (1.5). Then for any ¢ > 0 there exists
0 > 0 such that

(2.3) u(s) =uy+ sAuy+ e(s)  forany0<s <6
where || e(s) || = Ces, C is a positive constant.

PrROOF. By the relation
+

d
_—ut u -uo=A *
a1 ()l () t

we get (2.3).
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LEMMA 3. Let u(t) be a solution to (1.5). Then for any & > 0 there exists 6 >0
such that

2.9 u@®y=u@s)+(¢ —s)Au(s)+e(t—s) forO=s<t, [t—s|<o

where || e(t —s)|| = Ce|t —s].

Proor. This follows from (A.4), (A.1) and

d+
l e

7

d+
“ —u(0) H for any s > 0.
dt

LeEMMA 4. For a solution u(t) to (1.5), we have

u(s)=uy+ fsAu(r)dr
0
2.9) s
=uy+ f [Auy + roA(ug)Auy + n(r)ldr  for s = a(uy).
0
ProoF. By Lemma 2 and (A.4) we have
Au(r) = A(uy + rAuy + e(r)) = Auy + roA (u)Auy + n(r).

Let 0<@ <o be fixed. By Lemma 1, there exists a unique solution v‘(s)
(resp. 7'(s)) to (2.6) and (2.7) (resp. (2.8) and (2.9)):

(2.6) ﬁdi Ee%4v'(s), O0<s=T,
ds
2.7 vi(0) = u(t), O0<t=T

where u(¢) is a solution to (1.5);

dv! o
(2.8) —Ee AD(s), O0<s=T,
ds
(2.9) 7'0)=u(), O0<t=T.
Let
(4(0) = ug,

u(t): solution to (1.5) for0 <t =T,
(2.10) 1 .
u(z)=v'(s), wherez=t+se?, 0<t,s=T,

(u(z)=0'(s), wherez=t+se™®, 0<t,s=T.
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Let O, =X, s, 0) be the parallelogram with vertices at #,, &, + s, t, + s + se’
and ¢, + se', and define

fo+s to+s +se” to+ se"

Cgae= [T pae [T s [ gz [t gae
We shall show that [o u(z)dz = 0.
Let ®(t) = [¢ n(r)dr and &(t) = [§ D(r)dr.
LEMMA 5. There exist constants C;>0(i =1,...,5) such that

e =Cit, 1D |lewa = Gt | 1(0) o = Cit,
@) g =Cat?, || D) |6 = Cot’.

The proof is easy and omitted.
Let u(t) be a solution to (2.1) and (2.2). Set

M =sup{||u(?)];0=t =T},

M, =sup{ [Au() [|;0=t =T},

M = sup{ || 34 (u(t)Au(?) ||;; 0=t =T},

M, =sup{ || (s — )24 u(t), Au(t)Au(t) ||puey 0=t <s = T).
LEMMA 6. Every constant M, (i =1,...,4) is finite.

PrOOF. Since u(¢) is a solution to (2.1) and (2.2), we have

| Au@) || = || Auo||  foranyO0=t.
This implies
@2.11) My = || Aup |
and
@12) M= o) +T || An .

By (A.4) we have || dA(u(t))Au(t) |¢c =L || Au(2) || . This implies
(2.13) M, < LM,
If s >t and s — t is sufficiently small, by (A.7) we get

A (u(s)x = dAu()) + (s — )02A(u(2), Au(t))x + &(s — t)x.
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Then using (2.13) we get

Il (s = )?A(u(t), Au()x || = || 04(u(s)) — 0Aw(t) — &(s — D) e | |

S QRLM,+ Cys — 1)) || x ||

QLM+ GTY) | x |-

Consequently we get

(2.14) M, 2IM, + GT2
3. Proof of Theorem 1
For simplicity we assume {, = 0. We abbreviate Agtodand || - |lgto || -
Let
G.1) w(0) =, EDM),  uls)= u(0)+fsAu(r)dr,
0
3.2) v(0) = u(t), v(s) =v(0) + fs e®Av(r)dr,
0
(3.3) wO) =u(0), w(s)=w(0)+ f " e Aw(r)dr,
0
(3.4) PO)=w(t), P(s)=P(0)+ f " AP(r)dr,
0
and
I= f(: u(s)ds, IlI= J:: v(s)ds, III= f: w(s)ds,
(3-3) 1V=f0'P(s)ds, V=f0' [P(s) — v*(t)]ds.
LEMMA 7.
I= fo u(s)ds
(3.6)

12 I .
=ty + EAuO + g A (up)Auy + D(t)

where &(t) = [§ O(s)ds and D(s) = {§ n(r)dr.

PROOF.

By (3.1) and Lemma 1 we get
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u(s) =u,+ fOSAu(r)dr

(3.7) — U+ fo Aty + rdA (uo) Ay + n(r)dr

2

= Uy + sAuy + 52— A (ug)Auy + D(s).

by integrating u#(s) from O to ¢ we obtain (3.6).

LEMMA 8.
t
= f v(s)ds
0
13
= tuo + tzAuO + E aA (uo)Auo + t¢(t)
12
(3.8) + e’”a (Augy + 1A (u)Auy + n(2))

3
+ em% (0A () + 13%A (g, Aug) + &(2))

X (Auy + t0A (p)Auy + £(t)) + D(1)e®.

Proor. By (3.1) and (3.2) we have

v(s)=v(0) + fos e Av(r)dr

(3:9) = u0+J:Au(r)dr +fse""Av(r)dr.

By (A.4) and (A.7) we obtain
Av(r) = A((0) + e“rdv(0) + &(r))
= Av(0) + e"°rdA(v(0))Av(0) + n(r)
(3.10) = Auy + t0A (uy)Auy + n(t)
+ e®r(8A (1) + 1324 (g, Athg) + (1))

X (Aug + tdA (up)Auy + &(t)) + n(r).

Combining (3.10) and (3.9), (3.8) is easily obtained.
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LEMMA 9.

Il = fo w(s)ds
(3.11)

Proor. From (3.1) and (3.3) it follows that

(3.12) w(s) = w(0) + fos eAw(r)dr = uy + fos e®Aw(rdr.

From (A.4), (3.3) and Lemma 2 it follows that

Aw(r) = A(w(0) + e®rdAu, + &(r))
(3.13)

= Auy + erdA (up)Auy + n(r).
(3.12) and (3.13) imply

2
(3.14) w(s)=uy+ e? (sAuo + e""% 0A (up)Au, + <D(s)> .

By integrating w(s) from 0 to ¢ we obtain (3.11).

LemMma 10.
t

IV= f P(s)ds
0

2
= 1y + ’5 (Ao + n(0) + &)
3
+ ’g (0A (o) Ao + (1)) + EW)Atlo + (1))
(3.15)

4 4
+ 5 04 (oA (o + ¢(0) =04 (uo)Auo)

ot £
+ e (_12_ 0A (ug)Aug + P 02A (ug, Aug)dA (uo)Auo> .

ProOOF. By (3.4) we get

[t 13 .
= tu, + " (5 Auy + e"’g 0A (ug)Aug + <I>(t)) .

Isr. J. Math.

. £ !
+ e“’(tzAuo + 1 ®(t) + Y A (ug)Auy + 5 024 (ug, Aug)(Auy + n(1))
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(3.16) P(s) = P(0) + f " AP(r)dr = wit) + f " AP(r)dr.
0 [¢]
From (3.12) it follows that
2
3.17) P0)=u, + e (tAuo + e""% AA (up)Auy + <I>(t)> .

By Lemma 2 and (A.4) we get

AP(r)=A(P(0) + raAP(0) + &(r))
(3.18) = Aw(t) + roA(w(t))Aw(t) + n(r).
By (3.13) we have
(3.19) Aw(r) = Auy + etdA (ug)Aug + n(t).

By (A.7) we obtain

Aw(t) = 04 (up + €tAug + £(2))

(320) = aA(uO) + eiotazA (u09 AuO) + c(t)

Then from (3.16), (3.17), (3.18), (3.19) and (3.20) we get
. 12
P(s)=uy+ e® (tAuo + e"’E 0A (up)Auy + <I>(t)>

+ 5(Aug + e"tdA (ug)Auy + n(2))
(3.21) .
+ 7 ((0A (ug) + €18 A(uo, Aug) + &(2))

X (Aug + e84 (up)Auy + (1)) + s&(t)).

By integrating P(s) from 0 to ¢ we have (3.15).
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LemMA 11.
V= ft [P(s) — v*(¢))ds
(1]
4
- :—2 €%(3A (o)A (1) Atk + 02 A (tdgy Attg) ko)

2 3
(322) —-dn+ % () + ’2—2 ) + 56— E(1)(Auo + €104 (ug)Auy + 1(1))

Lo ["1aa 3?4 (u,, A
Se [ 16400 + 534, At

+ E(5)(Augp + 504 (ug)Auy) + e(s)E(s)]ds.
Proor. By (2.6), (2.7), (3.1), (A.4) and Lemma 2 we have
vo(1) = u(s) +j: e Avs(r)dr

2

s
= Uy + sAuy + 3 A (ug)Auy + D(s)

t
+ e fo [Auy + 504 (up)Aug + n(s)

+ er(8A (ug) + 5324 (ug, Aug) + E(5))
X (Aug + s3A (ug)Aug + &(s)) + n(r)idr

2

(323) = up+sdup+ “—; A (up) Aty + B(s)
+ e®(tAuy + stdA (ug)Auy + tn(s))
2
+ 2 €90 ot + S3A (UoNOA (A ()

+ 5824 (g, Aug) Aty + 5294 (ug, Aug)(dA (up)Atke)

+ (04 (ug) + $32A (ug, Aup) + &(s5))e(s)

+ E(s ) Auy + s0A (ug)Aug + £(s))) + P(2)e.
Then by (3.21) and (3.23) we obtain
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f [P(s) — v*(1))ds
0

- fo : [e“’d)(t) +sn(t)+ %2 E(t) (At + €°13A (U)o + 1(1))
+ 5&(1) — D(s) — e”tn(s)
— e g((aA(uo) + 9% (o, DA (Up)))e(S)
+ E(s)Aup + 534 (ug)Aug) + &(s)c(s)
(3.24)

+(s—1) %t €"%(0A4 (1o)0A (o) Aty + A (14, Auo)Auo))] ds

2 3
- é(t)’; n(e) + ’g E(t A + 1A (o) Ay + (1))

+t—2 t—""t—2 ' [(0A () + 504ty A
RO | 0w+ sodu, Auecs)

+ (s )(Aug + 594 (up)Aug) + £(s)E(s)]ds
+ % €"(0A (1g)0A (ug)Auy + 324 (1g, Attg)Atty).

Thus (3.22) is obtained.

Lemma 12.  For sufficiently small t > 0 we have

” L, u(z)dz

Proofr. From (2.6),...,(2.10) and (3.1),...,(3.5) it follows that

L{u(z)dz=‘ﬁ:u(s)ds+£ v(s)eds —fotvS(t)ds _fo' w(s)eds

= fo u(s)ds + fo "v(s)eds — fotP(s)ds

B f wis)eds + f [P(s) — v (O)ds
0 0

=Cr.

=1+ e“ll — eIl - IV + V.

Then by Lemma 7, ..., Lemma 11 we get
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1 .
f u(z)dz = p 14 (— e"%(AA (1p)dA (ug)Auy — 324 (14, Ag)Atiy)
a
- emtazA (uo, Auo)aA (uo)Auo + temazA (uo, Auo)aA (uo)Auo)

- % PoAGu(0)
+ e (t<I>(t) - g 324 (uy, Augn(t)

A G) + 582 A
: fo [(0A (o) + 592A (thy Aug))e(s)

+ E(s ) (Auy + 504 (ug)Auy) + 8(s)§(s)]ds>

+ eziot_z ()
2

3
+ e”"% ((0A (up) + 102A (g, Aug))e(t)

+ §(1)(Aup + 194 (u)Auo) + E(2)e(1)).

Then from Lemma 5 there exists a positive constant C such that

f o u(z)dz

There exists n EN, such that

= Ct.

2T <inf{e(u(t); 0 = |t| <T).

For t = 27", we denote D(jt + kte”, ¢, 6) by O, ,. By Lemma 12 we obtain

” f 2z ’ f% u(z)dz

Therefore for any ¢ > 0 there exists large n such that

[

28 3 T3
<73 _5_C4"t3=C4"(—s—) <Cc—.
G 2" AL

G k=1

3
§CL<8.
G Al

It means that
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f’u(z)dz =0.

In the case that — w < 8 <0, the proof is analogous to that of 0 < § < w.
Hence u(z) is analytic.

To show that « is unique, it suffices to show it for real ¢ since « is analytic.
However, for real ¢, uniqueness of « is included in Theorem A.
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